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The Stokes set of the cusp diffraction Catastrophe 
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Abstract. Stokes and anti-Stokes lines are familiar in  the asymptotic approximation of 
functions of a complex variable. We generalise this notion and define the Stokes and 
anti-Stokes sets of a complex function of many (possibly complex) variables, defined by a 
diffraction-type integral. They are subsets of the Maxwell set of catastrophe theory, 
extended to complex variables. On the Stokes set the number of complex stationary points 
contributing to the integral changes by one, whereas on the caustic the number of real 
stationary points changes by two. Knowledge of the location of the Stokes set is essential to 
perform a full stationary phase analysis of a diffraction integral, and it imposes a constraint 
upon the positions of wavefront dislocations. For the canonical cusp diffraction catastrophe 
we find the explicit equation of the Stokes set, which is a broadened mirror image of the cusp 
caustic. 

1. Introduction 

Catastrophe theory (Thom 1975, Poston and Stewart 1978) is concerned with the forms. 
of real functions. Consider a family, parametrised by real control variables c, of smooth 
real functions 4(s; c )  of the real state variables s. The form of a smooth function is 
largely determined by its stationary points, which for a member of our family of 
functions are points s at which 

v s4 (s ; c) = 0. 

The family of functions divides into subfamilies having different forms, which 
implies that the control space is divided into regions separated by a subset of co- 
dimension one (i.e. dimension one less than the space), called by Thom (1975, p 57) the 
catastrophe set. Thom distinguishes two types of catastrophe point: conflict points and 
bifurcation points. At a conflict point 4(s; c )  has two or more absolute minima. At a 
bifurcation point two or more stationary points coalesce. On crossing the conflict set C 
the absolute minimum of 4 (s ; c )  changes from one stationary point to another, while on 
crossing the bifurcation set B the number of real stationary points changes by two, 
which is usually much more significant physically. 

The families of functions fall into a discrete set of classes, each of which constitutes 
one catastrophe. Every member of a class has the same form, which is represented by its 
simplest member-the canonical catastrophe polynomial or normal form, such as 
equation (2) below for the cusp catastrophe. 
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The form of a function is well displayed by its level lines 

Q!J (s ; c )  = constant, 

in state space, for particular values of c. This is particularly convenient when s is 
two-dimensional, and for ease of description we shall often assume this to be the case. 
The connectivity of the level lines changes on crossing B, but not on crossing C, because 
the level lines near an extremum are compact. 

Arnol’d (1974) generalised the conflict set by defining the Maxwell set M to be the 
control points at which stationary values coincide. Poston and Stewart (1978, p 239) 
refer to this as the non-local bifurcation set, as against the local bifurcation set B at which 
stationary points coincide. M is important if the global form of a function is relevant. 
The connectivity of the level lines of the function changes not only on B, but also on a 
subset of M called by Poston and Stewart the saddle-connection set. This is the set of 
control points at which stationary points are joined by a level line (which clearly 
excludes extrema). The significance of the saddle-connection set shows up clearly when 
the level lines represent, for example, the stream lines of a fluid flow, sucn as that 
analysed by Berry and Mackley (1977). 

We shall generalise the non-local bifurcation set further, by moving outside the 
scope of catastrophe theory proper and allowing s, and possibly also c, to become 
complex. Such complexification is essential in the application of catastrophe theory to 
diffraction. We can describe the form of the complex function Q!J (s; c )  in terms of its real 
and imaginary parts 4~ and 41 respectively. For cuspoid catastrophes s is a single 
variable s, which we have allowed to become complex. Since Q!J is an analytic function of 
s, Q!JR and Q!JI are not independent, but related by the Cauchy-Riemann equations. This 
means that the level lines of Q!JR and dl in the complex s plane form an orthogonal net, 
and that the stationary points of Q!J can only be saddles. Hence Thom’s idea of conflict 
set is now quite inappropriate, but we can consider the Maxwell and saddle-connection 
sets of Q!JR and 91, as real functions of sR and sI. The Stokes and anti-Stokes sets, which 
are the subject of this paper, are subsets of the saddle-connection set of Q!JR and the 
Maxwell set of q51 respectively. 

2. Diffraction catastrophes 

In diffraction theory the functions Q!J(s ; c )  are source-receiver distances or path lengths. 
The state variables s parametrise the source points, and the control variables c 
parametrise the receiver or field points. A stationary point of Q!J corresponds to a 
geometrical ray. If two or more geometrical rays coalesce, a caustic occurs, which in the 
geometrical model produces infinite intensity; i.e. field points c at which two or more 
points, where Q!J(s; c )  is stationary with respect to s, coalesce lie on a caustic. (For 
further details see Berry (1976), Poston and Stewart (1978, ch 12) and the review by 
Berry and Upstill (1980).) We see that the caustic in the observation space is precisely 
the bifurcation set B. The Maxwell set M does not manifest itself in applications to 
diffraction. 

For waves of finite wavelength, the geometrical caustic is clothed with a diffraction 
pattern, now called, following Trinkaus and Drepper (1977), a diffraction catastrophe. 
This is described by the set of canonical diffraction integrals 

m 

+(c )  = (2*)-”’2 S E R n  (1) 
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generated by the normal form $(s; c )  for each of the catastrophes (Berry 1976). This 
set of canonical diffraction integrals forms the set of standard functions with which to 
analyse any diffraction catastrophe, by using them as the comparison integrals in a 
uniform approximation (Berry 1976). Moreover, for short wavelengths and close to the 
caustic the appropriate canonical integral on its own (apart from various wavelength 
scaling factors) provides a very good approximation to the diffraction catastrophe (see 
Berry, Nye and Wright (1979), henceforth referred to as BNW). The status of these 
canonical integrals is that they play the same role in the analysis of caustic wavefields 
that complex exponentials play in the elementary analysis of plane waves: they are 
important mathematical tools, and as such need to be thoroughly understood. 

Catastrophes, and hence diffraction catastrophes, have a hierarchical structure: 
every catastrophe (except the fold) contains simpler subordinate catastrophes (e.g. 
Arnol’d 1973, Connor 1976). Therefore the way to study a catastrophe is to approach it 
via its subordinate components. The simplest catastrophe is the fold, and its associated 
canonical diffraction integral is essentially the well-known Airy integral function 
(Abramowitz and Stegun 1964) introduced by Airy (1838) to study the rainbow, 
probably the most familiar caustic. 

The second member of the hierarchy is the cusp catastrophe, whose normal form is 

$ ( 5 ; x ,  Y ) = i 5 4 + ; x 5 2 + Y 5 .  (2) 
The canonical cusp diffraction integral, our principal object of study, is 

a3 

C(x, y )  = ( 2 7 p 2  I-, d5 exp(id(5; x, Y 1). (3) 

It was introduced and studied initially by Pearcey (1946) as a generalisation of the Airy 
function, and has subsequently been studied by, among others, Trinkaus and Drepper 
(1977) and BNW. The fold and cusp catastrophes are particularly important because 
they are subordinate to every higher catastrophe. They were used, for example, in the 
analysis by BNW of the elliptic umbilic diffraction catastrophe, which is represented by 
a two-dimensional integral. 

The diffraction integrals arise physically as integrals over the real state space, but 
once defined they may be regarded mathematically as contour integrals over a complex 
state space. This is the step which takes us outside the scope of catastrophe theory 
proper, and allows us to consider complex state variables, which are now just dummy 
integration variables. However, for physical diffraction patterns in real space only real 
control variables occur directly, so in this paper control variables will always be real 
unless otherwise stated. 

The integrands of diffraction integrals are highly oscillatory, so that their behaviour 
is most usefully described in terms of their amplitude lexp(i$)I = exp(+) and phase $R 

as functions of the complex state variables at each control point. The singular sets in the 
control space of $-the bifurcation set or caustic, and the Maxwell sets of dR and 
dI--determine the topography of the integrand. 

Using the canonical integrals, and understanding their structure, is greatly facili- 
tated by a simple tractable approximation, the stationary phase approximation. This 
has the great merit of being closely related to the physical interference effects which 
produce the diffraction patterns in nature. We shall see that a knowledge of the Stokes 
set is essential to perform a full stationary phase analysis of a diffraction integral. But 
first we pause to consider the other main feature of diffraction patterns, which are 
complementary to caustics. 
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3. Wavefront dislocations 

An example of the use of stationary phase approximations is in finding wavefront 
dislocations, which constitute the ‘edges’ of wavefronts (Nye and Berry 1974, Wright 
19’77,1979). When using a complex wavefunction, it is convenient to define wavefronts 
as surfaces of constant phase, modulo 27~,  of the wavefunction. Then a wavefront can 
end only where the phase is indeterminate, and since the wavefunction must be 
differentiable, the amplitude (or modulus) must go to zero at least linearly at this point. 
Hence a necessary condition for a wavefront to end is that the amplitude be zero; it is 
not suficient because it includes, for example, the coincident edges of two wavefronts, 
which correspond to the birth or death of a pair of wavefront dislocations (in which case 
the amplitude goes to zero quadratically). We can, however, define a wavefront 
dislocation to be the set of points at which the wavefunction is zero and consider the 
birthldeath event as a degenerate case (in fact, a dislocation of strength zero). Adopting 
this philosophy allows us to find dislocations by consideration of the wave amplitude 
alone, and then having found them to analyse their detailed structure by considering the 
phase. 

Wavefront dislocations are the absolute global intensity minima of a diffraction 
pattern. They are generally sets of codimension two, e.g. lines in three dimensions, and 
form a conceptual framework upon which to hang the diffraction pattern. Describing a 
complicated three-dimensional wavefield is not easy, but a statement of the configura- 
tion of the dislocation lines (global intensity minima) and of the caustic (approximate 
local intensity maxima) provides a very good basis for such a description. This approach 
is applied to the three-dimensional elliptic umbilic diffraction catastrophe by BNW. 

The diffraction catastrophe wavefunctions are defined by complex integrals, so to 
find the waveEront dislocations we have to find the zeros of these complex integrals. 
There are no general exact methods for doing this, so we must resort either to numerical 
solutions or analytical approximations such as stationary phase. In the latter case we 
discover that the Stokes set can impose a constraint upon the location of the wavefront 
dislocations. 

4. Stationary phase approximation 

We concentrate on the canonical cusp diffraction integral (3), which is a function of two 
real variables, defined by a single complex contour integral. It illustrates the general 
principles without getting too complicated, and has the great merit that it is the highest 
diffraction catastrophe for which explicit equations can be found for not only the 
bifurcation set, but also the Stokes set. 

We consider the problem of approximating C(x,  y )  by the method of stationary 
phase (Dingle 1973, ch IX, Born and Wolf 1975, appendix HI, Budden 1961, ch 1.5). 
This method assumes that the main contributions to the integral come from the 
neighbourhoods of points where the phase 

4(5; x, Y ) = & 4 + ~ x 6 2 + Y 5  

is stationary with respect to 6, i.e. points 6 satisfying 

d4/d( = t 3 + x 5 +  y = 0. (4) 
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When the stationary points are all real, the integration contour along the real 5‘ axis 
passes through them all. 

In the stationary phase method there is normally some parameter k multiplying the 
function q5 to give the phase, which is taken to be large, producing an asymptotic series 
in k.  For large k the integrand oscillates very rapidly, thereby cancelling itself out, 
except near stationary points of 4. Therefore the neighbourhoods of the stationary 
points may be assumed to make independent contributions to the integral, as long as 
they remain isolated. In wave theory k is the wavenumber (27r/A, where A is the 
wavelength), and in the short-wavelength limit, where caustics dominate the wavefield, 
k is large. However, k has been scaled out of the canonical integrals (l), so that large k 
is equivalent to large separation of stationary points, except on the caustic B. The 
neighbourhood of the caustic must be handled by uniform approximation (Chester eta1 
1957, Berry 1976), which we shall not consider here, so we assume that the stationary 
points are always isolated. 

The caustic of C(x, y )  is given by 

d 4 / d t  = d24/d t2  = 0 

to be the cusped semi-cubical parabola 

2 7 y 2 + 4 x 3 = 0  

shown in figure 1. On the caustic the stationary points of q5 are all real, and two 
coincide. Standard theory of cubics (e.g. Ferrar 1958) applied to equation (4) shows 
that ‘inside’ the caustic, where 

27y2 + 4x3 < 0, 

the stationary points are all real and different, but ‘outside’ the caustic, where 

27y2 + 4x3 > 0, 

Figure 1. The three regions of the ( x ,  y )  plane, in which the roots of the stationary phase 
equation (4) behave differently. 
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only one stationary point is real, the other two forming a complex conjugate pair 
(figure 1). 

Inside the caustic the integration contour of (3) along the real 6 axis passes through 
all the stationary points. We simply add all their individual contributions to find the 
approximation to C(x, y) ,  as in appendix C of BNW. The three real stationary phase 
points correspond to three real physical rays (Berry and Upstill 1980). 

Outside the caustic we have a problem, because only one of the stationary points lies 
on the integration contour along the real 6 axis. The simplest approximation is to ignore 
the other two. This implies that there are no wavefront dislocations, i.e. zeros of 
C(x, y),  outside the caustic, since there is nothing which can cancel the single stationary 
phase term. From exact computations of C(x, y )  (Pearcey 1946, BNW, appendix C) 
this is known not to be the case-the complex stationary points must be considered in 
order to retain the full structure of the integral. But which, if either, should be 
included? 

It is at this point that we are forced to regard (3) as a contour integral in the complex 
6 plane and employ the method of steepest descent (Dennery and Krzywicki 1967, ch 1, 
0 31). For some fixed (x, y) ,  

lexp(i4(5; x, y))I=exp(-41(6; x, Y ) )  

gives the magnitude of the integrand as a function of ([R, [I), and its graph is a 
two-dimensional surface. The stationary points of 4 are saddle points of this surface; 
extrema occur only at infinity. The topography of the surface is conveniently sum- 
marised by the level lines through its saddles, which are the level lines of # J ~  through its 
stationary points. (Remember that our exponent is i4, not just 4) .  

Since we are only considering real x and y, we have 

4(6*; x, Y )  = 4*(5; x, Y ) .  ( 5 )  

Therefore 4I is antisymmetric in &, and so the real 6 axis is always a level line of 41, 
which always passes through a saddle since one is always real. Since 4 is an analytic 
function of [, the level lines of c $ ~  and 4I must intersect at 90" at a single saddle, 60" at a 
double saddle, etc (e.g. Dennery and Krzywicki 1967). As 1[1+00, 4 ( [ ;  x, y)-:t4 
independently of x and y. Putting 5 = R exp(i0) gives 41 - :R4 sin(40), so that as)mp- 
totically lexp(i4)I always has four radial hills H and four radial flat-bottomed valleys V 
connected by steep cliffs in which all level lines ultimately merge. Using these facts, plus 
the positions of the saddles, the level lines through the saddles of lexp(i4)/ can be 
sketched, as in figures 2-4. 

For convergence of the integral, the integration contour must end somewhere on the 
asymptotic zeros of the integrand where &+ +OO (i.e. in the valleys V) and avoid the 
asymptotic singularities where q51 + --OO (the hills H). A trivial modification of Jordan's 
lemma (e.g. Dennery and Krzywicki 1967) shows that the contour need not actually end 
at 6 = *CO on the real axis, but can end at 6 = *coexp(i0), where 0 s 0 s $7. 

Subject to these constraints, we distort the integration contour from its original 
position along the real 6 axis until it lies only along lines of steepest descent from saddles 
of Iexp(iq5)l. This may require an excursion into a previously unexplored valley, as in 
figure 2, and it need not use all the saddles. Once this distortion is complete, the contour 
is divided into subcontours, each running from a point where the integrand is zero, up to 
a saddle and back down to a zero (e.g. V3-S1-V2 and V2-S2-V1 in figure 2(b)). (See 
Dingle (1973, ch IX).) All the zeros of this integrand are asymptotic, so both ends of 
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every subcontour must extend to infinity, although on the figures the subcontours are 
shown schematically linking together at a finite distance along the valley. The largest 
value of the integrand along each subcontour occurs at the saddle, and hence the main 
contribution to the integral comes from its neighbourhood. The contributions from 
different subcontours are obviously independent and additive, and this is the 
justification for the independence of real saddle contributions asserted earlier. 

The level lines of 4~ and q51 form an orthogonal net, and since the level lines of dI are 
level lines of /exp(iq5)1, the level lines of dR are the lines of steepest descent. Our 
integration contour runs along level lines of $J~, and, if the topology of these level lines 
changes, as it does on the saddle-connection set of 4R, then the topology of the 
integration contour may change. The integration contour only runs along a small 
number of the level lines of 4~ through its saddles, so generally the integration contour 
changes form only on a subset of the saddle-connection set, which we call the Stokes set 
(for a reason to be explained later). The Maxwell sets of c $ ~  and can be defined 
analytically, but the Stokes set can generally only be determined by detailed examina- 
tion of the topography of the integrand, which we shall now do. 

5. The Stokes and anti-Stokes sets 

We find the general topography of the integrand of ( 3 )  at particular points (x ,  y )  outside 
the caustic by perturbing simple special cases. Since C(x, y )  is symmetric in y, we 
consider only y b 0. On the caustic at x = -3 (y /2 ) ' l3  the double real stationary point of 
4 occurs at 5 = +( -x /3 ) ' / ' ,  and the single real stationary point at 5 = - 2 ( - x / 3 ) ' / ' .  
Using the conditions on the level lines of 4I given previously, the level lines through the 
saddles of lexp(i4)), which are all at height one, can only be as sketched (as heavy full 
curves) in figure 2(a) .  Then the integration contour must be as shown by the broken and 
arrowed curve. 

Im L 

lo) ( b )  

Figure 2. The complex 6 plane showing the level lines (heavy and full) of lexp(id(6; x ,  y ) ) i  
through the saddles, the integration contour (broken and arrowed), and the asymptotic hills 
H and valleys V. Heights of the level lines are indicated by < 1 , l  and > 1. The real 6 axis is 
always a level line: ( a )  is on the caustic, (b) is just outside the caustic, both for y > 0. 
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If we now move (x, y )  outside the caustic a small distance, the double saddle splits 
into a complex conjugate pair of single saddles, as in figure 2(b). This lifts the 
degeneracy of the level lines, leaving one set at height one and producing sets at just 
above and just below one, associated with the two new complex saddles. (The relative 
heights of sets of level lines can be determined from the re!ative positions of their 
branches in the asymptotic cliff faces between valleys V and hills H.) The integration 
contour is carried upwards with the saddle S2, and cannot pass through the lower saddle 
at all, so that only the real saddle and the upper complex saddle contribute to the 
integral. The integral is actually evaluated in this situation, using an approximation to 
the stationary points, in appendix C of BNW. 

We can generalise the correspondence between real stationary phase points and real 
physical rays by saying that a contributing complex stationary phase point corresponds to 
a complex ray. So just outside the caustic there is one real ray and one complex ray. 
Keller (1958) introduced complex rays physically as an extension of geometrical optics, 
which was reviewed by Kravtsov (1967). The approach via steepest descent integration 
of the diffraction integral justifies Keller’s physical assumption that only certain 
complex geometrical rays contribute to the diffraction pattern. 

On the positive x axis the stationary points occur at 5 = 0, kix 1’2. Now I$ ( E ;  x, 0) has 
a centre of symmetry at 6 = 0 (see equation (2)), making q51 antisymmetric in tR as well 
as in &. Hence, in this case only, the imaginary 6 axis is also a level line of /exp(iI$)l, and 
all the saddles and level lines through them are at height one. Therefore the level lines 
of lexp(iq5)I and the integration contour must be as in figure 3(a). For a small positive y, 
a simple perturbation calculation shows that the saddles are shifted parallel to the real 
axis as shown (exaggerated) in figure 3(b). Again the degeneracy of the level lines is 
lifted, as indicated in the figure. By continuity with respect to y ,  the integration contour 
is little changed, as shown. 

The important topological difference between figures 2(b) and 3(b) is that in figure 
2(b) the line of steepest descent from saddle SI runs to valley V2, whereas in figure 3(b) 
it runs to valley VI. This changes the form of the integration contour, so the two figures 
must lie on opposite sides of a Stokes set. The saddle connection between saddle S1 and 
the lower complex saddle is an example of a saddle connection which does not affect the 

l a )  i b )  

Figure 3. As figure 2 but ( a )  is on the positive x axis (here the imaginary 5 axis is also a level 
line), ( b )  is just above the positive x axis. 
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integration contour, although it occurs at the same time as the upper connection which 
does affect the contour. 

Close to the positive x axis neither complex saddle contributes-there is one real ray 
only. This disappearance of the complex ray is a feature which is not apparent from 
Keller’s geometrical approach, and one expects his method to give the wrong result in 
such regions. Somewhere between the caustic and the positive x axis the number of 
contributing complex saddles changes by one, which must occur along two lines running 
from the origin (the cusp point of the caustic) to infinity, symmetrically above and below 
the x axis. These lines form the Stokes set. 

On crossing the Stokes set, the number of terms in the stationary phase approxima- 
tion to the integral changes by one, and this is the reason for the name. In the theory of 
asymptotic expansions of functions of a complex variable, it is well known that the form 
of the asymptotic expansion changes discontinuously when the phase of the complex 
variable passes through certain values. This effect is called the Stokes phenomenon. It 
was discovered by Stokes (1864) while investigating the properties of Airy functions 
(essentially), which we now know are the simplest diffraction catastrophes. Dingle 
(1973) points out that this discontinuity of form is essential to preserve the numerical 
continuity of the analytic function being expanded, by cancelling the discontinuity in the 
numerical sum of one of the component infinite asymptotic series. The Stokes 
phenomenon occurs when the variable crosses certain lines radiating from the origin of 
the complex plane, called Stokes lines. If the function being asymptotically approxi- 
mated has a contour integral representation, then the Stokes phenomenon corresponds 
to the number of stationary points contributing to the integral changing by one. 

The Stokes set which we have introduced is a generalisation of the Stokes line to 
functions of many, possibly complex, variables defined by a contour integral such as (3). 
We may define the Stokes set generally to be the set of points in the (multidimensional 
complex) parameter space, other than the bifurcation set, at which the number of 
stationary points contributing to the integral changes by one. 

Actually on the Stokes set, the topography of the integrand is intermediate between 
that shown in figures 2(b)  and 3(b). The two branches of the integration contour which 
lie in valley V2 of figure 2(b)  coalesce when the line of steepest descent from saddle SI 
passes through saddle S 2 ,  as indicated in figure 4. Approaching figure 4 from figure 

Re 2: 

Figure 4. As figure 2, but on the Stokes set. The integration contour is indeterminate at 
saddle Sp. 
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2 ( b ) ,  the integration contour turns left through a right angle at Sz and runs to infinity 
along Vz. It then returns along exactly the same path, as indicated by the arrows 
pointing in both directions, and passes straight over SZ into VI. The two branches of the 
contour in Vz exactly cancel, so the contour is equivalent to that which turns to the right 
through a right angle at S z  and passes directly into VZ. This is the contour which results 
as we approach figure 4 from figure 3 ( b ) .  

This is the mechanism of the Stokes discontinuity, whereby the contribution of a 
saddle to the integral changes discontinuously. However, the integral itself depends 
continuously on its parameters, so any good approximation to it must be at least nearly 
continuous. Thus any discontinuity must be masked by a much larger continuous term, 
so that a saddle can only undergo a Stokes discontinuity when it is subdominant (e.g. 
Budden 1961, Ursell 1965) to (i.e. its amplitude is much less than) some other 
contribution to the integral (saddle SI in this example). This is part of the reason why 
the Stokes set is generally a subset of the saddle connection set. Our topographical 
analysis takes care of subdominance automatically. 

The Maxwell set of dI determines the dominance of saddles, because on it saddles of 
lexp(i4)I occur at the same height. By analogy with anti-Stokes lines in conventional 
asymptotics (e.g. Budden 1961), we define the anti-Stokes set to be the set of points in 
the parameter space, other than the bifurcation set, on which saddles which may 
contribute to the integral exchange dominance. Therefore the anti-Stokes set is a 
subset of the Maxwell set of &. It is not as important as the Stokes set, but it is useful, 
and appears naturally in any stationary phase analysis with complex stationary points. 
Since different saddles take part in a Stokes discontinuity on different branches of the 
Stokes set, there is usually a branch of the anti-Stokes set (or the bifurcation set) on 
which the saddles exchange dominance between branches of the Stokes set. This is 
certainly true for C(x, y )  with real ( x ,  y) ,  and for the Airy function of a complex 
argument. In fact, for the cusp diffraction catastrophe the anti-Stokes set interleaves 
between branches of the Stokes set in the same way that the conflict set interleaves 
between branches of the bifurcation set, on which different saddles coalesce. 

In general, for real control parameters, the Stokes, anti-Stokes and bifurcation sets 
all have the same dimension, i.e. codimension one; e.g. for C(x, y )  they are all lines in 
the real (x ,  y )  plane. 

6. Equations of the Stokes and anti-Stokes sets 

The.cusp is probably the only diffraction catastrophe for which the equation of the 
Stokes set can be found explicitly, because of the lack of suitable formulae for the roots 
of a polynomial of degree greater than three. Suppose the real stationary point SI 
occurs at 5 = &, and the complex stationary point SZ which may contribute occurs at 
5 = &. On the Stokes set (figure 4) the line of steepest descent from er runs through tC. 
The lines of steepest descent are level lines of d ~ ,  and those through tr satisfy 

4R(8; x ,  Y )  = 4 R ( f r ;  x ,  Y ) .  

On the Stokes set & lies on this curve, and the figures show that & can only lie on the 
correct branch as shown in figure 4. Remembering that the positions of the saddles 
depend on the parameters x and y, the equation of the Stokes set is given by 

4R[Sc(X, y ) ;  x,  Y]-#'R[tr(X, y ) ;  x ,  y ] = o .  (6) 
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By solving explicitly for the stationary points, we show in appendix 1 that the 
equation of the Stokes set is 

27y2  - ( 5  + J f i ) x  = 0.  

(This can also be achieved without using explicit solutions of the cubic, but we need the 
explicit solutions in appendix 2 ) .  This is to be compared with the equation of the 
caustic: 

27y2  + 4x3 = 0.  

They are both semi-cubical parabolae, but the Stokes set is broader than the caustic and 
on the other side of the y axis, as shown in figure 5. It should be noted that this similarity 
between the Stokes and bifurcation sets is due to the simplicity of the problem-for 
higher diffraction catastrophes the Stokes set does not generally have the same form as 
the bifurcation set. 

Figure 5. The regions of the control plane ( x ,  y) ,  having different numbers of rays or 
contributing stationary points, divided by the caustic and Stokes set. Also shown are the 
anti-Stokes and conflict sets. 

The rest of the Maxwell set of & is very easy to find, because equation (Al)  of 
appendix 1 shows that the upper and lower saddles, which are a complex conjugate pair, 
always have the same value of &. Hence the whole (x, y )  plane outside the caustic is a 
Maxwell set for these two saddles. Between the caustic and the Stokes set (figure 2 )  they 
share a line of steepest descent, so all of this region is also a saddle-connection set of +R. 
To the right of the Stokes set (figure 3 )  the saddles of 4R are not connected. The 
degeneracy of these sets (i.e. the fact that they are two-dimensional instead of 
one-dimensional) is due to the symmetry ( 5 ) ,  namely 

4 ( t * ; x , y ) = 4 * ( T ; x , y ) ,  ( 5 ' )  

of q5 for real controls x ,  y .  
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The anti-Stokes set is much easier to find than the Stokes set. Moving in a circle 
about the origin in the (x, y )  plane from the caustic to the positive x axis, the typical 
topography of the integrand is as shown successively in figures 2(a) ,  2(b) ,  4,3(b) ,  3(a) .  
Apart from on the bifurcation set (figure 2 ( a ) ) ,  saddles only have the same amplitudes 
(i.e. one) on the positive x axis (figure 3(a)). This is the anti-Stokes set, as shown in 
figure 5. On crossing it into the lower half-plane y s 0, the lower saddle takes over the 
role of S 2  (because .$([; x ,  -y) = .$( -[; x ,  y) ,  see equation (2)), i.e. S 2  exchanges 
dominance with SI, which exchanges dominance simultaneously with the lower saddle, 
due again to the symmetry (5’) above. 

7. Conclusion 

We have introduced the Stokes and anti-Stokes sets of functions of many variables, 
defined by diffraction integrals. For the simplest diffraction catastrophe, the fold, alias 
the Airy integral function, the Stokes and anti-Stokes lines in the complex plane of its 
argument are well known. For the next member of the hierarchy, the cusp diffraction 
catastrophe C(x, y) ,  we have found the Stokes and anti-Stokes lines in the ( x ,  y )  plane 
of its two real arguments. The Stokes set is a broadened mirror image of the bifurcation 
set or caustic, a similarity which is largely fortuitous. The anti-Stokes set is the positive 
x axis, while the Maxwell set (which is also the conflict set) is the negative x axis. The 
caustic and the Stokes set partition the parameter space into regions containing 
different numbers of rays, as shown on figure 5 by the hatching. On crossing the caustic, 
two real rays turn into one complex ray; on crossing the Stokes set a complex ray 
appears or disappears. 

Wavefront dislocations are phase singularities of complex diffraction wavefunc- 
tions. The Stokes set imposes a constraint upon their positions, because for dislocations 
to occur there must be at least two rays, so that they can destructively interfere. 
Therefore we expect no dislocations to the right of the Stokes set in figure 5 ,  and this is 
borne out by exact computations. In fact, dislocations outside the caustic of the cusp 
diffraction catastrophe only occur in a single row very close to the caustic, because away 
from the caustic the amplitude of the complex ray decreases exponentially, so that it is 
no longer strong enough to cancel the real ray. In appendix 2 we make use of the exact 
positions of the stationary points found in appendix 1 to make a stationary phase 
approximation to C(x, y )  between the caustic and the y axis. From this we find the 
approximate positions of the wavefront dislocations. 

Extension of the Stokes set of C(x, y )  into the complex parameter space should be 
worthwhile for the following reasons. The Airy function with complex arguments, used 
in a uniform approximation, is necessary to approximate a diffraction integral with two 
coalescing complex stationary points. This occurs, for example, in the swallowtail 
diffraction catastrophe with real controls, where the stationary points coalesce in two 
complex conjugate pairs (Wright 1977, Berry, Nye and Wright, in preparation). 
Similarly one expects C(x, y )  with complex arguments to be necessary to handle three 
coalescing complex stationary points, as will occur in the wigwam (Ad diffraction 
catastrophe with real controls (where three conjugate pairs coalesce). Also 
complexification of control variables can transform diffraction integrals into partition 
functions of statistical mechanics. (See e.g. Giittinger and Eikemeier (1979, part V).) 

Analysis of the Stokes set of the swallowtail diffraction catastrophe is in progress, 
although it is no longer possible to find explicit equations. Extension to umbilic 
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diffraction catastrophes, defined by double integrals, would be a major contribution to 
the unsolved problem of how to apply the method of steepest descent in four 
dimensions (Urselll980). Once the Stokes sets of the canonical diffraction catastrophe 
integrals are known, the Stokes set of a general diffraction catastrophe should be 
deducible via the method of uniform approximation (Berry 1976). 
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Appendix 1. The equation of the Stokes set 

Let .5 = & at a stationary point, where s = r or c. Then & satisfies 

ad(&; x, Y)/@ = 5: +XtS+Y = 0. 

4 ( t s ;  x, Y) = it: +$xes” + Y5s. 

4(&; x, Y )  = i ( X C  + 3Y&), 

We wish to evaluate 

Subtracting $& times equation (Al )  (which is zero) gives 

so 

cbR(‘fs; x, Y ) = i [ X ( & t  - ‘ & ) + ~ Y ~ s R I ,  

where the subscripts R and I indicate real and imaginary parts respectively. Using this 
result, equation (6) becomes 

x‘$: + 3 y t r -  x (6zR - ‘$SI) - 3YtcR = 0. (A31 

Now we must solve equation (Al )  for tr and &. We distinguish three cases: x = 0, 

x = 0 gives trivially 
x > 0 and x < 0. 

5 r  = Y tc = y ‘I3 exp($i.rr), 
ahd the only solution of (A3) is y = 0. 

1958) and write the required solutions of (Al )  as 
For x > 0 we extend the standard trigonometric solution of a cubic (see e.g. Ferrar 

& = - 2 ( $ ~ ) ’ / ~  sinh 8, 

SC = ($x)”’(sinh e +id? cosh e),  
where 

sinh(38) =$A, A = y(3/x)3/2. 

Substituting into (A3) gives 

sinh’ 8 +cosh2 8 - A  sinh e = 0, (A51 
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and eliminating sinh 8 between (A4c) and (A5) gives 

A ~ -  1 0 ~ ~  - 2 = 0, 

whose real roots are 

A = * ( 5  +Jz)’/2. 
Therefore, since A = y ( 3 / ~ ) ~ / ’ ,  the equation of the Stokes set for x 3 0 is 

2 7 y 2 - ( 5 + J ~ ) x 3 = 0 .  

For x < 0 the required solutions of (Al )  may be written as 

tr = -2 ( -$~) ’ /~  cosh 8, W a )  

(A6b) tC = (-$x)”’(cosh 8 +id? sinh e), 
where 

cosh(38) =;A, A ~ ( - 3 / x ) ~ / ~ .  

The solution is A = * ( - 5  +JE)‘/’; but (421- 5 )  < 4, so that the curve given by this 
value of A would lie inside the caustic where the stationary points are all real. Therefore 
this curve is not part of the Stokes set. 

Appendix 2. Wavefront dislocations outside the cusp caustic 

In appendix 1 we found the stationary points outside the caustic exactly. We now use 
them to compute the positions of the dislocations in this region for x < 0, without 
making the perturbative approximation used by BNW. It is convenient to use A,  
instead of y, as a variable, and equations (A6) give the positions of the two contributing 
saddles. Then standard theory (e.g. Dingle 1973) gives the sum of the contributions 
from the real and complex saddles respectively as 

C -  
exp{ia[.rr -3x2(4 cosh’ 8 +2A cosh e)]) 

[ - ~ ( 4  cosh’ 8 - l)]”’ 

+exp{i$[-.rr+2 tan-l(J?coth 8)-$x2(cosh2 8-3 sinh’ 8 - A  cosh e)]} 

exp[$(x2/&)(-2 cosh 8 + A )  sinh 81 
[2(-x)(4 cosh’ 8 - 1)”’sinh 8]’/’ ‘ 

X 

C = 0 gives the following two conditions, from considering respectively the amplituqes 
and phases of the two terms: 

2 4 sinh’ 8 - 2 cosh 8 )  sinh 8 
4 cosh’ 8 - 1 

tan-’(dscoth 8)+(4n+l).rr+$x2(cosh2 8+sinh2 8 + A  cosh 8)-0. 

These two equations plus 

A = Y ( - ~ / x ) ~ / ’  = 2 cosh(38) 

were solved numerically to give the results in the middle column of table A l .  They are 
compared with the results quoted in appendix C of BNW. The right-hand column 
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Table Al. Positions of dislocations outside the cusp. 
~~~ ~ 

Perturbative Measured from phase 
stationary phase Stationary phase plot (figure 14 of BNW) 
(equation C9) of BNW (this paper) (estimated error 10.05) 

X Y X Y X Y 

- 1 3 8  11.70 -1.62 11.68 -1.74 11.65 
-2.98 13.19 -2.98 k3.16 -3.07 13.13 
-3597 14.40 -3.97 14.39 -4505 14.35 
-4.79 1 5 . 5 0  -4.80 15.49 -4.86 15.45 

shows values measured from the exact computed phase map of C ( x , y ) ,  and the 
left-hand column was calculated by a perturbative stationary phase method. 

In every case the present results are closer than the perturbative results to the 
measured positions, but there is still a significant discrepancy. This is mainly because 
these dislocations are very close to the caustic, where the stationary points are not well 
separated and so the basic stationary phase approximation is becoming unreliable. This 
conclusion is supported by the fact that the discrepancy gets larger towards the cusp 
point, where all three stationary points coalesce. 

The complexity of the present method, which gives only a slight increase in accuracy, 
emphasises the merit of the perturbative method. This applies particularly inside the 
caustic, where three stationary points contribute to the integral, and for the higher 
diffraction catastrophes which may have many more stationary points. 
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